Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.

نویسندگان

  • G P Gusev
  • T I Ivanova
چکیده

To determine Na+/H+ exchange in lamprey erythrocyte membranes, the cells were acidified to pH(i) 6.0 using the K+/H+ ionophore nigericin. Incubation of acidified erythrocytes in a NaCl medium at pH 8.0 caused a considerable rise in 22Na+ influx and H+ efflux during the first 1 min of exposure. In addition, exposure of acidified red cells to NaCl medium was associated with rapid elevation of intracellular Na+ content. The acid-induced changes in Na+ influx and H+ efflux were almost completely inhibited by amiloride and dimethylamiloride. In native lamprey erythrocytes, amiloride-sensitive Na+ influx progressively increased as the osmolality of incubation medium was increased by addition of 100, 200, or 300 mmol/l sucrose. Unexpectedly, the hypertonic stress induced a small, yet statistically significant decrease in intracellular Na+ content in these cells. The reduction in the cellular Na+ content increased with hypertonicity of the medium. The acid- and shrinkage-induced Na+ influxes were inhibited by both amiloride and 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) in a dose-dependent manner. For both blockers, the half-maximal inhibitory values (IC50) were much greater for the shrinkage-induced (44 and 15 micromol/l for amiloride and EIPA, respectively) than for the acid-induced Na+ influx (5.1 and 3.3 micromol/l, respectively). The data obtained are the first demonstration of the presence of a Na+/H+ exchanger with high activity in acidified (pH(i) 6.0) lamprey red blood cells (on average, 512 +/- 56 mmol/l cells/h, n = 13). The amiloride-sensitive Na+ influxes produced by hypertonic cell shrinkage and acid load are likely to be mediated by distinct ion transporters in these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.

Na+ transport across the lamprey erythrocyte membrane was examined using 22Na as a tracer. Both Na+ influx and Na+ effux exhibit a wide variability among different lampreys due to amiloride-sensitive components. Addition of 1 mmol/l amiloride to incubation media resulted in a decrease of the Na+ influx from 8.4 +/- 0.9 to 5.5 +/- 0.3 mmol/l cells/h (n = 18, P < 0.001), and of the rate coefficie...

متن کامل

Glutaraldehyde fixation of sodium transport in dog red blood cells

The large increase in passive Na flux that occurs when dog red blood cells are caused to shrink is amiloride sensitive and inhibited when Cl is replaced by nitrate or thiocyanate. Activation and deactivation of this transport pathway by manipulation of cell volume is reversible. Brief treatment of the cells with 0.01-0.03% glutaraldehyde can cause the shrinkage-activated transporter to become i...

متن کامل

Effects of lovastatin treatment on red blood cell and platelet cation transport.

Hypercholesterolemia frequently accompanies hypertension, and it has been suggested that by affecting membrane lipid composition, hypercholesterolemia may cause or accentuate abnormalities in several red blood cell transports associated with hypertension. Such an effect might obfuscate the relation of membrane markers to hypertension and decrease their usefulness in genetic studies of the herit...

متن کامل

Difference between human red blood cell Na+-Li+ countertransport and renal Na+-H+ exchange.

Several laboratories have reported that the activities of sodium-lithium countertransport are increased in red blood cells from patients with essential hypertension. Based on the many similarities between this transport system and the renal sodium-proton exchanger, a hypothesis has been put forth in the literature that increased red blood cell sodium-lithium countertransport activity may be a m...

متن کامل

Clinical Studies Difference Between Human Red Blood Cell Na-Li Counter transport and Renal Na-H Exchange

Several laboratories have reported that the activities of sodium-lithium countertransport are increased in red blood cells from patients with essential hypertension. Based on the many similarities between this transport system and the renal sodium-proton exchanger, a hypothesis has been put forth in the literature that increased red blood cell sodium-lithium counter-transport activity may be a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • General physiology and biophysics

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2004